Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 129(1): e2023JD039505, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440118

RESUMO

Upward lightning (UL) has become a major threat to the growing number of wind turbines producing renewable electricity. It can be much more destructive than downward lightning due to the large charge transfer involved in the discharge process. Ground-truth lightning current measurements indicate that less than 50% of UL could be detected by lightning location systems (LLS). UL is expected to be the dominant lightning type during the cold season. However, current standards for assessing the risk of lightning at wind turbines mainly consider summer lightning, which is derived from LLS. This study assesses the risk of LLS-detectable and LLS-undetectable UL at wind turbines using direct UL measurements at instrumented towers. These are linked to meteorological data using random forests. The meteorological drivers for the absence/occurrence of UL are found from these models. In a second step, the results of the tower-trained models are extended to a larger study area (central and northern Germany). The tower-trained models for LLS-detectable lightning are independently verified at wind turbine sites in this area and found to reliably diagnose this type of UL. Risk maps based on cold season case study events show that high probabilities in the study area coincide with actual UL flashes. This lends credibility to the application of the model to all UL types, increasing both risk and affected areas.

2.
J Geophys Res Atmos ; 128(10): e2022JD037776, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38439996

RESUMO

Upward lightning is rarer than downward lightning and requires tall (100+ m) structures to initiate. It may be either self-initiated or triggered by other lightning discharges. While conventional lightning location systems (LLSs) detect most of the upward lightning flashes superimposed by pulses or return strokes, they miss a specific flash type that consists only of a continuous current. Globally, only few specially instrumented towers can record this flash type. The proliferation of wind turbines in combination with damages from upward lightning necessitates an improved understanding under which conditions self-initiated upward lightning and the continuous-current-only subtype occur. This study uses a random forest machine learning model to find the larger-scale meteorological conditions favoring the occurrence of the different phenomena. It combines ground truth lightning current measurements at the specially instrumented tower at Gaisberg mountain in Austria with variables from larger-scale meteorological reanalysis data (ERA5). These variables reliably explain whether upward lightning is self-initiated or triggered by other lightning discharges. The most important variable is the height of the -10°C isotherm above the tall structure: the closer it is, the higher is the probability of self-initiated upward lightning. For the different flash types, this study finds a relationship to the larger-scale electrification conditions and the LLS-detected lightning situation in the vicinity. Lower amounts of supercooled liquid water, solid, and liquid differently sized particles and no LLS-detected lightning events nearby favor the continuous-current-only subtype compared to the other subtypes, which preferentially occur with LLS-detected lightning events within 3 km from the Gaisberg Tower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...